Wednesday, 26 February 2014

Criteria of Maximum and Minimum

 


We have these two criteria for judging whether a function has a maximum or minimum at a particular point .

For a maximum at   x=c  :- 

---  Criterion A :-  (1) dy/dx=0 and
               
       (2) dy/dx  is possitive at  c-h  ;

           dy/dx  is negative at   c+h

---  Criterion B :-  (1) dy/dx=0  and

        (2)  (d/dx)(dy/dx)  is negative 

For  a minimum at   x=d  :-

---  Criterion A :-  (1)  dy/dx=0  and

      (2)  dy/dx  is negative at  d-h  ;

           dy/dx  is positive at  d+h  

---  Criterion B :-  (1)  dy/dx=0  and

     (2)  (d/dx)(dy/dx)  is positive . 



No comments:

Post a Comment

Our Latest Post

How to Evaluate an Integral

In this video you will see how to evaluate an Integral. This video shows an example, by this example you will see about how to evaluate an ...

Popular Post